New England 2030 Power System Study: Preliminary Maps and Cost Estimates for Potential Transmission

August 14, 2009 Planning Advisory Committee

Potential Transmission

- ISO developed sixteen <u>conceptual</u> transmission configurations:
 - Thirteen scenarios to connect wind in New England, and
 - Three scenarios to expand ties to neighboring regions
 - Transmission scenarios developed as robust, workable solutions with cost estimates based on actual project experience
 - More detailed transmission studies will be required if the region pursues specific projects
 - New voltage classes will be needed for higher wind penetration scenarios (345 kV is the backbone of the existing system)

Preliminary Maps and Cost Estimates for Potential Transmission

- List of Maps (number of maps):
 - Base system map (1)
 - Wind scenarios and potential transmission (13)
 - 2,000 MW wind scenario and potential transmission (2)
 - 2,000 MW offshore-only wind scenario and potential transmission (2)
 - 4,000 MW wind scenario and potential transmission (2)
 - 4,000 MW offshore-only wind scenario and potential transmission (2)
 - 5,500 MW wind scenario (4,000 MW offshore and 1,500 MW onshore) (1)
 - 8,000 MW wind scenario and potential transmission (2)
 - 12,000 MW wind scenario and potential transmission (2)
 - Interconnection scenarios (3)
 - 1,500 MW New Brunswick interconnection (1)
 - 1,500 MW Québec interconnection (1)
 - 10,000 MW New York interconnection (1)
- Preliminary Transmission Cost Estimates

The Challenge: Connecting Wind Energy to Load Centers

- Region's population and electricity demand are substantially concentrated in southern New England
- Potential wind resources do not substantially overlap high population and high energy demand areas
- Therefore, new "backbone" transmission will be required to connect potential wind resources to load centers in **New England**

new england

150

Base System Map

 2019 Base Transmission System Prior to Potential Transmission System Expansions

ISO new england

2,000 MW Wind Scenario and Potential Transmission

ISO new england

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

2,000 MW Offshore Wind Scenario and Potential Transmission

ISO new england

4,000 MW Wind Scenario and Potential **Transmission**

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

ISO new england

4,000 MW Offshore Wind Scenario and **Potential Transmission**

ISO new england

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

Transmission for 5,500 MW of Wind

- Potential transmission to connect:
 - 4,000 MW of offshore wind, and
 - 1,500 MW of onshore wind

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

8,000 MW Wind Scenario and Potential Transmission

ISO new england

12,000 MW Wind Case and Potential **Transmission**

ISO new england

Other Transmission Interconnections

new england

ISO

Cost Estimate Range Development Methodology

- All One-Line Proposals Reviewed By ISO-NE Staff 1.
- 2. By Voltage / By Circuit Configuration Type
- By Voltage / By Substation Element Type 3.

new england

150

- By NE Cost Zone / From Recent NE Experience 4.
- 5. Calculation Produces Order-Of-Magnitude 2009 Dollars
- Mid-Range Cost Estimate Decreased By 25% 6.
- 7. Mid-Range Cost Estimate Increased By 25%.

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

Cost Estimate Range Development – Example

Step 1

Install +/-450kV, 1500MW HVDC From US / CN Border To Central Massachusetts

<u>Step 2</u>

A. Transmission:

1. 400 Mi Lattice Tower Line Traversing All 3 N.E. Cost Zones Using ROW Parallel To Other Existing T-Line ROWs

2A. Z1: 110 Mi @ \$3.5M / Mi 2B. Z2: 235 Mi @ \$4.5M / Mi 2C. Z3: 55 Mi @ \$5.5M / Mi

B. Substation:

1. One +/-450kV, 1500MW HVDC Converter Terminal, Complete With Connection To Existing 345kV Substation (Not Requiring Reinforcements)

2. Terminal Cost @ \$270M (Or ~\$180 / KW Installed And Interconnected)

<u>Step 3</u>

_ine	A. Transmission:	<u>Step 4</u>	
st el	110 X \$3.5 = \$385.0M 235 X \$4.5 = \$1057.5M 55 X \$5.5 = \$302.5M	A. Mid-Range Estimate:	
ROWs		<u>Round \$2015M = ~\$2.0B</u>	
/ Mi / Mi	T-Subtotal = \$1745M	B. Low-Range Estimate:	
Mi	B. Substation:	0.75 X \$2.0B = ~\$1.5B <u>C. High-Range Estimate</u> :	
W al,	1 X \$270 = \$270.0M		
	S-Subtotal = \$270M	1.25 X \$2.0M = ~\$2.5B_	
on ation ments)	<u>C. Mid-Range ("Target")</u> <u>Estimate</u> :	Ţ	
)M And	T-Subtotal = \$1745M S-Subtotal = \$270M	Order-Of-Magnitude Cost Estimate Range	
	T&S Total = \$2015M	Is \$1.5B - \$2.5B, Stated In 2009 \$	

New England 2030 Power System Study - Potential Transmission PAC - August 14, 2009 (C) 2009 ISO New England Inc.

Preliminary Transmission Cost Estimates

	Description	Approx. circuit miles of new transmission	Preliminary order-of-magnitude cost estimate range by voltage class (2009 dollars)	Mid-range cost estimate
1	2,000 MW On and Offshore Wind	1,785	345 kV/HVDC: \$4.7B to \$7.9B	\$6.4B
2	2,000 MW Offshore Wind	1,015	345 kV/HVDC: \$3.6B to \$6.0B	\$4.8B
3	4,000 MW On and Offshore Wind	3,615	345 kV: \$8.0B to \$13.2B 500 kV: \$10.8B to \$17.9B	\$10.7B \$14.3B
4	4,000 MW Offshore Wind	1,430	345 kV/HVDC: \$4.7B to \$7.6B	\$6.1B
5	8,000 MW On and Offshore Wind	4,320	500 kV: \$13.4B to \$22.4B 765 kV: \$17.3B to \$28.9B	\$17.9B \$23.0B
6	12,000 MW On and Offshore Wind	4,320	500 kV: \$14.5B to \$24.2B 765 kV: \$18.9B to 31.5B	\$19.3B \$25.2B
7	1,500 MW New Brunswick Interconnection*	400	+/-450 kV HVDC: \$1.5B to \$2.5B	\$2.0B
8	1,500 MW Québec Interconnection*	280	+/-450 kV HVDC: \$1.1B to \$1.9B	\$1.6B
9	10,000 MW New York Interconnection**	1,020	500 kV: \$4.7B to \$7.7B 765 kV: \$6.8B to \$11.2B	\$6.3B \$8.9B

Source: ISO New England and Energy Initiatives Group

* Estimate does not include facilities in Québec and New Brunswick; only includes cost of potential transmission in New England.

** Estimate does not include New England's share of the cost of building transmission from the Midwest to the New York-New England border; only includes cost of integrating energy from the NY-NE border to load centers in New England.

